EXERCISES 46

Computations

In Exercises 1 through 5, state whether the given function ν is a Euclidean norm for the given integral domain.

- **1.** The function ν for \mathbb{Z} given by $\nu(n) = n^2$ for nonzero $n \in \mathbb{Z}$
- **2.** The function ν for $\mathbb{Z}[x]$ given by $\nu(f(x)) = (\text{degree of } f(x))$ for $f(x) \in \mathbb{Z}[x]$, $f(x) \neq 0$
- 3. The function ν for $\mathbb{Z}[x]$ given by $\nu(f(x)) =$ (the absolute value of the coefficient of the highest degree nonzero term of f(x)) for nonzero $f(x) \in \mathbb{Z}[x]$
- **4.** The function ν for \mathbb{Q} given by $\nu(a) = a^2$ for nonzero $a \in \mathbb{Q}$
- **5.** The function ν for \mathbb{O} given by $\nu(a) = 50$ for nonzero $a \in \mathbb{O}$
- 6. By referring to Example 46.11, actually express the gcd 23 in the form $\lambda(22,471) + \mu(3,266)$ for λ , $\mu \in \mathbb{Z}$. [Hint: From the next to the last line of the computation in Example 46.11, 23 = (138)3 391. From the line before that, 138 = 3,266 (391)8, so substituting, you get 23 = [3,266 (391)8]3 391, and so on. That is, work your way back up to actually find values for λ and μ .]
- 7. Find a gcd of 49,349 and 15,555 in \mathbb{Z} .
- 8. Following the idea of Exercise 6 and referring to Exercise 7, express the positive gcd of 49,349 and 15,555 in \mathbb{Z} in the form $\lambda(49,349) + \mu(15,555)$ for $\lambda, \mu \in \mathbb{Z}$.
- 9. Find a gcd of

$$x^{10} - 3x^9 + 3x^8 - 11x^7 + 11x^6 - 11x^5 + 19x^4 - 13x^3 + 8x^2 - 9x + 3$$

and

$$x^6 - 3x^5 + 3x^4 - 9x^3 + 5x^2 - 5x + 2$$

in $\mathbb{Q}[x]$.

- 10. Describe how the Euclidean Algorithm can be used to find the gcd of n members a_1, a_2, \dots, a_n of a Euclidean domain.
- 11. Using your method devised in Exercise 10, find the gcd of 2178, 396, 792, and 726.

Concepts

- **12.** Let us consider $\mathbb{Z}[x]$.
 - **a.** Is $\mathbb{Z}[x]$ a UFD? Why?
 - **b.** Show that $\{a + xf(x) \mid a \in 2\mathbb{Z}, f(x) \in \mathbb{Z}[x]\}$ is an ideal in $\mathbb{Z}[x]$.
 - **c.** Is $\mathbb{Z}[x]$ a PID? (Consider part (b).)
 - **d.** Is $\mathbb{Z}[x]$ a Euclidean domain? Why?
- 13. Mark each of the following true or false.

a.	Every Euclidean domain is a PID.
b.	Every PID is a Euclidean domain.
c.	Every Euclidean domain is a UFD.
d.	Every UFD is a Euclidean domain.
е.	A gcd of 2 and 3 in \mathbb{Q} is $\frac{1}{2}$.
f.	The Euclidean algorithm gives a constructive method for finding a gcd of two integers.
g.	If ν is a Euclidean norm on a Euclidean domain D , then $\nu(1) \leq \nu(a)$ for all nonzero $a \in D$.

- h. If ν is a Euclidean norm on a Euclidean domain D, then ν(1) < ν(a) for all nonzero a ∈ D, a ≠ 1.
 i. If ν is a Euclidean norm on a Euclidean domain D, then ν(1) < ν(a) for all nonzero nonunits a ∈ D.
 j. For any field F, F[x] is a Euclidean domain.
- 14. Does the choice of a particular Euclidean norm ν on a Euclidean domain D influence the arithmetic structure of D in any way? Explain.

Theory

- **15.** Let *D* be a Euclidean domain and let ν be a Euclidean norm on *D*. Show that if *a* and *b* are associates in *D*, then $\nu(a) = \nu(b)$.
- 16. Let D be a Euclidean domain and let ν be a Euclidean norm on D. Show that for nonzero $a, b \in D$, one has $\nu(a) < \nu(ab)$ if and only if b is not a unit of D. [Hint: Argue from Exercise 15 that $\nu(a) < \nu(ab)$ implies that b is not a unit of D. Using the Euclidean algorithm, show that $\nu(a) = \nu(ab)$ implies $\langle a \rangle = \langle ab \rangle$. Conclude that if b is not a unit, then $\nu(a) < \nu(ab)$.]
- 17. Prove or disprove the following statement: If ν is a Euclidean norm on Euclidean domain D, then $\{a \in D \mid \nu(a) > \nu(1)\} \cup \{0\}$ is an ideal of D.
- 18. Show that every field is a Euclidean domain.
- **19.** Let ν be a Euclidean norm on a Euclidean domain D.
 - **a.** Show that if $s \in \mathbb{Z}$ such that $s + \nu(1) > 0$, then $\eta : D^* \to \mathbb{Z}$ defined by $\eta(a) = \nu(a) + s$ for nonzero $a \in D$ is a Euclidean norm on D. As usual, D^* is the set of nonzero elements of D.
 - **b.** Show that for $t \in \mathbb{Z}^+$, $\lambda : D^* \to \mathbb{Z}$ given by $\lambda(a) = t \cdot \nu(a)$ for nonzero $a \in D$ is a Euclidean norm on D.
 - **c.** Show that there exists a Euclidean norm μ on D such that $\mu(1) = 1$ and $\mu(a) > 100$ for all nonzero nonunits $a \in D$.
- **20.** Let D be a UFD. An element c in D is a **least common multiple** (abbreviated lcm) of two elements a and b in D if $a \mid c$, $b \mid c$ and if c divides every element of D that is divisible by both a and b. Show that every two nonzero elements a and b of a Euclidean domain D have an lcm in D. [Hint: Show that all common multiples, in the obvious sense, of both a and b form an ideal of D.]
- **21.** Use the last statement in Theorem 46.9 to show that two nonzero elements $r, s \in \mathbb{Z}$ generate the group $\langle \mathbb{Z}, + \rangle$ if and only if r and s, viewed as integers in the domain \mathbb{Z} , are **relatively prime**, that is, have a gcd of 1.
- 22. Using the last statement in Theorem 46.9, show that for nonzero $a, b, n \in \mathbb{Z}$, the congruence $ax \equiv b \pmod{n}$ has a solution in \mathbb{Z} if a and n are relatively prime.
- **23.** Generalize Exercise 22 by showing that for nonzero a, b, $n \in \mathbb{Z}$, the congruence $ax \equiv b \pmod{n}$ has a solution in \mathbb{Z} if and only if the positive gcd of a and n in \mathbb{Z} divides b. Interpret this result in the ring \mathbb{Z}_n .
- **24.** Following the idea of Exercises 6 and 23, outline a constructive method for finding a solution in \mathbb{Z} of the congruence $ax \equiv b \pmod{n}$ for nonzero $a, b, n \in \mathbb{Z}$, if the congruence does have a solution. Use this method to find a solution of the congruence $22x \equiv 18 \pmod{42}$.

SECTION 47

GAUSSIAN INTEGERS AND MULTIPLICATIVE NORMS

Gaussian Integers

We should give an example of a Euclidean domain different from \mathbb{Z} and F[x].

47.1 Definition A Gaussian integer is a complex number a + bi, where $a, b \in \mathbb{Z}$. For a Gaussian integer $\alpha = a + bi$, the **norm** $N(\alpha)$ of α is $a^2 + b^2$.