EXERCISES 14 #### **Computations** 142 In Exercises 1 through 8, find the order of the given factor group. - 1. $\mathbb{Z}_6/\langle 3 \rangle$ - 3. $(\mathbb{Z}_4 \times \mathbb{Z}_2)/\langle (2,1) \rangle$ - 5. $(\mathbb{Z}_2 \times \mathbb{Z}_4)/\langle (1,1) \rangle$ - 7. $(\mathbb{Z}_2 \times S_3)/\langle (1, \rho_1) \rangle$ - **2.** $(\mathbb{Z}_4 \times \mathbb{Z}_{12})/(\langle 2 \rangle \times \langle 2 \rangle)$ - **4.** $(\mathbb{Z}_3 \times \mathbb{Z}_5)/(\{0\} \times \mathbb{Z}_5)$ - **6.** $(\mathbb{Z}_{12} \times \mathbb{Z}_{18})/\langle (4,3) \rangle$ - **8.** $(\mathbb{Z}_{11} \times \mathbb{Z}_{15})/\langle (1,1) \rangle$ In Exercises 9 through 15, give the order of the element in the factor group. - **9.** 5 + $\langle 4 \rangle$ in $\mathbb{Z}_{12}/\langle 4 \rangle$ - **11.** $(2,1) + \langle (1,1) \rangle$ in $(\mathbb{Z}_3 \times \mathbb{Z}_6)/\langle (1,1) \rangle$ - **13.** $(3,1) + \langle (0,2) \rangle$ in $(\mathbb{Z}_4 \times \mathbb{Z}_8) / \langle (0,2) \rangle$ - **10.** $26 + \langle 12 \rangle$ in $\mathbb{Z}_{60}/\langle 12 \rangle$ - **12.** $(3,1) + \langle (1,1) \rangle$ in $(\mathbb{Z}_4 \times \mathbb{Z}_4)/\langle (1,1) \rangle$ - **14.** $(3,3) + \langle (1,2) \rangle$ in $(\mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2) \rangle$ - **15.** $(2,0) + \langle (4,4) \rangle$ in $(\mathbb{Z}_6 \times \mathbb{Z}_8)/\langle (4,4) \rangle$ - **16.** Compute $i_{\rho_1}[H]$ for the subgroup $H = \{\rho_0, \mu_1\}$ of the group S_3 of Example 8.7. ### Concepts In Exercises 17 through 19, correct the definition of the italicized term without reference to the text, if correction is needed, so that it is in a form acceptable for publication. - **17.** A normal subgroup H of G is one satisfying hG = Gh for all $h \in H$. - **18.** A normal subgroup H of G is one satisfying $g^{-1}hg \in H$ for all $h \in H$ and all $g \in G$. - **19.** An *automorphism* of a group G is a homomorphism mapping G into G. - **20.** What is the importance of a *normal* subgroup of a group G? Students often write nonsense when first proving theorems about factor groups. The next two exercises are designed to call attention to one basic type of error. 21. A student is asked to show that if H is a normal subgroup of an abelian group G, then G/H is abelian. The student's proof starts as follows: We must show that G/H is abelian. Let a and b be two elements of G/H. - a. Why does the instructor reading this proof expect to find nonsense from here on in the student's paper? - **b.** What should the student have written? - c. Complete the proof. - 22. A torsion group is a group all of whose elements have finite order. A group is torsion free if the identity is the only element of finite order. A student is asked to prove that if G is a torsion group, then so is G/H for every normal subgroup H of G. The student writes We must show that each element of G/H is of finite order. Let $x \in G/H$. Answer the same questions as in Exercise 21. - 23. Mark each of the following true or false. - **a.** It makes sense to speak of the factor group G/N if and only if N is a normal subgroup of the group - **b.** Every subgroup of an abelian group G is a normal subgroup of G. - **c.** An inner automorphism of an abelian group must be just the identity map. |
d. Every factor group of a finite group is again of finite order. | |--| |
e. Every factor group of a torsion group is a torsion group. (See Exercise 22.) | |
f. Every factor group of a torsion-free group is torsion free. (See Exercise 22.) | |
g. Every factor group of an abelian group is abelian. | |
h. Every factor group of a nonabelian group is nonabelian. | |
i. $\mathbb{Z}/n\mathbb{Z}$ is cyclic of order n . | |
j. $\mathbb{R}/n\mathbb{R}$ is cyclic of order n , where $n\mathbb{R} = \{nr \mid r \in \mathbb{R}\}$ and \mathbb{R} is under addition. | #### Theory - **24.** Show that A_n is a normal subgroup of S_n and compute S_n/A_n ; that is, find a known group to which S_n/A_n is isomorphic. - 25. Complete the proof of Theorem 14.4 by showing that if H is a subgroup of a group G and if left coset multiplication (aH)(bH) = (ab)H is well defined, then $Ha \subseteq aH$. - **26.** Prove that the torsion subgroup T of an abelian group G is a normal subgroup of G, and that G/T is torsion free. (See Exercise 22.) - 27. A subgroup H is **conjugate to a subgroup** K of a group G if there exists an inner automorphism i_g of G such that $i_g[H] = K$. Show that conjugacy is an equivalence relation on the collection of subgroups of G. - **28.** Characterize the normal subgroups of a group G in terms of the cells where they appear in the partition given by the conjugacy relation in the preceding exercise. - **29.** Referring to Exercise 27, find all subgroups of S_3 (Example 8.7) that are conjugate to $\{\rho_0, \mu_2\}$. - **30.** Let H be a normal subgroup of a group G, and let m = (G : H). Show that $a^m \in H$ for every $a \in G$. - 31. Show that an intersection of normal subgroups of a group G is again a normal subgroup of G. - **32.** Given any subset S of a group G, show that it makes sense to speak of the smallest normal subgroup that contains S. [Hint: Use Exercise 31.] - 33. Let G be a group. An element of G that can be expressed in the form $aba^{-1}b^{-1}$ for some $a, b \in G$ is a **commutator** in G. The preceding exercise shows that there is a smallest normal subgroup C of a group G containing all commutators in G; the subgroup C is the **commutator subgroup** of G. Show that G/C is an abelian group. - **34.** Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G. - **35.** Show that if H and N are subgroups of a group G, and N is normal in G, then $H \cap N$ is normal in H. Show by an example that $H \cap N$ need not be normal in G. - **36.** Let G be a group containing at least one subgroup of a fixed finite order s. Show that the intersection of all subgroups of G of order s is a normal subgroup of G. [Hint: Use the fact that if H has order s, then so does $x^{-1}Hx$ for all $x \in G$.] - **37.** a. Show that all automorphisms of a group G form a group under function composition. - **b.** Show that the inner automorphisms of a group G form a normal subgroup of the group of all automorphisms of G under function composition. [Warning: Be sure to show that the inner automorphisms do form a subgroup.] - **38.** Show that the set of all $g \in G$ such that $i_g : G \to G$ is the identity inner automorphism i_e is a normal subgroup of a group G. - **39.** Let G and G' be groups, and let H and H' be normal subgroups of G and G', respectively. Let ϕ be a homomorphism of G into G'. Show that ϕ induces a natural homomorphism $\phi_*: (G/H) \to (G'/H')$ if $\phi[H] \subseteq H'$. (This fact is used constantly in algebraic topology.) - **40.** Use the properties $\det(AB) = \det(A) \cdot \det(B)$ and $\det(I_n) = 1$ for $n \times n$ matrices to show the following: - **a.** The $n \times n$ matrices with determinant 1 form a normal subgroup of $GL(n, \mathbb{R})$. - **b.** The $n \times n$ matrices with determinant ± 1 form a normal subgroup of $GL(n, \mathbb{R})$. - **41.** Let *G* be a group, and let $\mathcal{P}(G)$ be the set of all *subsets* of *G*. For any $A, B \in \mathcal{P}(G)$, let us define the product subset $AB = \{ab \mid a \in A, b \in B\}$. - **a.** Show that this multiplication of subsets is associative and has an identity element, but that $\mathscr{P}(G)$ is not a group under this operation. - **b.** Show that if N is a normal subgroup of G, then the set of cosets of N is closed under the above operation on $\mathcal{P}(G)$, and that this operation agrees with the multiplication given by the formula in Corollary 14.5. - **c.** Show (without using Corollary 14.5) that the cosets of N in G form a group under the above operation. Is its identity element the same as the identity element of $\mathcal{P}(G)$? # SECTION 15 FAC ## FACTOR-GROUP COMPUTATIONS AND SIMPLE GROUPS Factor groups can be a tough topic for students to grasp. There is nothing like a bit of computation to strengthen understanding in mathematics. We start by attempting to improve our intuition concerning factor groups. Since we will be dealing with normal subgroups throughout this section, we often denote a subgroup of a group G by N rather than by H. Let N be a normal subgroup of G. In the factor group G/N, the subgroup N acts as identity element. We may regard N as being *collapsed* to a single element, either to 0 in additive notation or to e in multiplicative notation. This collapsing of N together with the algebraic structure of G require that other subsets of G, namely, the cosets of N, also collapse into a single element in the factor group. A visualization of this collapsing is provided by Fig. 15.1. Recall from Theorem 14.9 that $\gamma: G \to G/N$ defined by $\gamma(a) = aN$ for $a \in G$ is a homomorphism of G onto G/N. Figure 15.1 is very similar to Fig. 13.14, but in Fig. 15.1 the image group under the homomorphism is actually formed from G. We can view the "line" G/N at the bottom of the figure as obtained by collapsing to a point each coset of N in another copy of G. Each point of G/N thus corresponds to a whole vertical line segment in the shaded portion, representing a coset of N in G. It is crucial to remember that multiplication of cosets in G/N can be computed by multiplying in G, using any representative elements of the cosets as shown in the figure. 15.1 Figure