where not all primes p_i need be distinct. Since $(p_1)^{r_1}(p_2)^{r_2}\cdots(p_n)^{r_n}$ is the order of G, then m must be of the form $(p_1)^{s_1}(p_2)^{s_2}\cdots(p_n)^{s_n}$, where $0 \le s_i \le r_i$. By Theorem 6.14, $(p_i)^{r_i-s_i}$ generates a cyclic subgroup of $\mathbb{Z}_{(p_i)^{r_i}}$ of order equal to the quotient of $(p_i)^{r_i}$ by the gcd of $(p_i)^{r_i}$ and $(p_i)^{r_i-s_i}$. But the gcd of $(p_i)^{r_i}$ and $(p_i)^{r_i-s_i}$ is $(p_i)^{r_i-s_i}$. Thus $(p_i)^{r_i-s_i}$ generates a cyclic subgroup $\mathbb{Z}_{(p_i)^{r_i}}$ of order

$$[(p_i)^{r_i}]/[(p_i)^{r_i-s_i}] = (p_i)^{s_i}.$$

Recalling that $\langle a \rangle$ denotes the cyclic subgroup generated by a, we see that

$$\langle (p_1)^{r_1-s_1} \rangle \times \langle (p_2)^{r_2-s_2} \rangle \times \cdots \times \langle (p_n)^{r_n-s_n} \rangle$$

is the required subgroup of order m.

11.17 **Theorem** If m is a square free integer, that is, m is not divisible by the square of any prime, then every abelian group of order m is cyclic.

Proof Let G be an abelian group of square free order m. Then by Theorem 11.12, G is isomorphic to

$$\mathbb{Z}_{(p_1)^{r_1}} \times \mathbb{Z}_{(p_2)^{r_2}} \times \cdots \times \mathbb{Z}_{(p_n)^{r_n}},$$

where $m = (p_1)^{r_1} (p_2)^{r_2} \cdots (p_n)^{r_n}$. Since m is square free, we must have all $r_i = 1$ and all p_i distinct primes. Corollary 11.6 then shows that G is isomorphic to $\mathbb{Z}_{p_1p_2\cdots p_n}$, so G is cyclic.

EXERCISES 11

Computations

- 1. List the elements of $\mathbb{Z}_2 \times \mathbb{Z}_4$. Find the order of each of the elements. Is this group cyclic?
- **2.** Repeat Exercise 1 for the group $\mathbb{Z}_3 \times \mathbb{Z}_4$.

In Exercises 3 through 7, find the order of the given element of the direct product.

3. (2, 6) in
$$\mathbb{Z}_4 \times \mathbb{Z}_{12}$$

4. (2, 3) in
$$\mathbb{Z}_6 \times \mathbb{Z}_{15}$$

5. (8, 10) in
$$\mathbb{Z}_{12} \times \mathbb{Z}_{18}$$

6. (3, 10, 9) in
$$\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$$

7.
$$(3, 6, 12, 16)$$
 in $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{20} \times \mathbb{Z}_{24}$

- **8.** What is the largest order among the orders of all the cyclic subgroups of $\mathbb{Z}_6 \times \mathbb{Z}_8$? of $\mathbb{Z}_{12} \times \mathbb{Z}_{15}$?
- **9.** Find all proper nontrivial subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- **10.** Find all proper nontrivial subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.
- 11. Find all subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_4$ of order 4.
- 12. Find all subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$ that are isomorphic to the Klein 4-group.
- 13. Disregarding the order of the factors, write direct products of two or more groups of the form \mathbb{Z}_n so that the resulting product is isomorphic to \mathbb{Z}_{60} in as many ways as possible.
- 14. Fill in the blanks.
 - **a.** The cyclic subgroup of \mathbb{Z}_{24} generated by 18 has order__.
 - **b.** $\mathbb{Z}_3 \times \mathbb{Z}_4$ is of order....

- **c.** The element (4, 2) of $\mathbb{Z}_{12} \times \mathbb{Z}_8$ has order__.
- **d.** The Klein 4-group is isomorphic to $\mathbb{Z} \times \mathbb{Z}$.
- **e.** $\mathbb{Z}_2 \times \mathbb{Z} \times \mathbb{Z}_4$ has __elements of finite order.
- **15.** Find the maximum possible order for some element of $\mathbb{Z}_4 \times \mathbb{Z}_6$.
- **16.** Are the groups $\mathbb{Z}_2 \times \mathbb{Z}_{12}$ and $\mathbb{Z}_4 \times \mathbb{Z}_6$ isomorphic? Why or why not?
- 17. Find the maximum possible order for some element of $\mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24}$.
- **18.** Are the groups $\mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24}$ and $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{40}$ isomorphic? Why or why not?
- 19. Find the maximum possible order for some element of $\mathbb{Z}_4 \times \mathbb{Z}_{18} \times \mathbb{Z}_{15}$.
- **20.** Are the groups $\mathbb{Z}_4 \times \mathbb{Z}_{18} \times \mathbb{Z}_{15}$ and $\mathbb{Z}_3 \times \mathbb{Z}_{36} \times \mathbb{Z}_{10}$ isomorphic? Why or why not?

In Exercises 21 through 25, proceed as in Example 11.13 to find all abelian groups, up to isomorphism, of the given order.

21. Order 8

22. Order 16

23. Order 32

24. Order 720

25. Order 1089

- 26. How many abelian groups (up to isomorphism) are there of order 24? of order 25? of order (24)(25)?
- 27. Following the idea suggested in Exercise 26, let m and n be relatively prime positive integers. Show that if there are (up to isomorphism) r abelian groups of order m and s of order n, then there are (up to isomorphism) rs abelian groups of order mn.
- 28. Use Exercise 27 to determine the number of abelian groups (up to isomorphism) of order (10)⁵.
- **29. a.** Let p be a prime number. Fill in the second row of the table to give the number of abelian groups of order p^n , up to isomorphism.

n	2	3	4	5	6	7	8
number of groups							

b. Let p, q, and r be distinct prime numbers. Use the table you created to find the number of abelian groups, up to isomorphism, of the given order.

i.
$$p^3q^4r^7$$

ii.
$$(qr)^7$$

iii.
$$q^5r^4q^3$$

- **30.** Indicate schematically a Cayley digraph for $\mathbb{Z}_m \times \mathbb{Z}_n$ for the generating set $S = \{(1,0),(0,1)\}$.
- 31. Consider Cayley digraphs with two arc types, a solid one with an arrow and a dashed one with no arrow, and consisting of two regular n-gons, for $n \ge 3$, with solid arc sides, one inside the other, with dashed arcs joining the vertices of the outer n-gon to the inner one. Figure 7.9(b) shows such a Cayley digraph with n = 3, and Figure 7.11(b) shows one with n = 4. The arrows on the outer n-gon may have the same (clockwise or counterclockwise) direction as those on the inner n-gon, or they may have the opposite direction. Let G be a group with such a Cayley digraph.
 - **a.** Under what circumstances will G be abelian?
 - **b.** If G is abelian, to what familiar group is it isomorphic?
 - **c.** If G is abelian, under what circumstances is it cyclic?
 - **d.** If G is not abelian, to what group we have discussed is it isomorphic?

Concepts

- **38.** Let G be an abelian group of order 72.
 - **a.** Can you say how many subgroups of order 8 G has? Why, or why not?
 - **b.** Can you say how many subgroups of order 4 G has? Why, or why not?
- **39.** Let G be an abelian group. Show that the elements of finite order in G form a subgroup. This subgroup is called the **torsion subgroup** of G.

Exercises 40 through 43 deal with the concept of the torsion subgroup just defined.

40. Find the order of the torsion subgroup of $\mathbb{Z}_4 \times \mathbb{Z} \times \mathbb{Z}_3$; of $\mathbb{Z}_{12} \times \mathbb{Z} \times \mathbb{Z}_{12}$.

- **41.** Find the torsion subgroup of the multiplicative group \mathbb{R}^* of nonzero real numbers.
- **42.** Find the torsion subgroup T of the multiplicative group \mathbb{C}^* of nonzero complex numbers.
- **43.** An abelian group is **torsion free** if e is the only element of finite order. Use Theorem 11.12 to show that every finitely generated abelian group is the internal direct product of its torsion subgroup and of a torsion-free subgroup. (Note that $\{e\}$ may be the torsion subgroup, and is also torsion free.)
- **44.** The part of the decomposition of G in Theorem 11.12 corresponding to the subgroups of prime-power order can also be written in the form $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_r}$, where m_i divides m_{i+1} for $i = 1, 2, \dots, r-1$. The numbers m_i can be shown to be unique, and are the **torsion coefficients** of G.
 - **a.** Find the torsion coefficients of $\mathbb{Z}_4 \times \mathbb{Z}_9$.
 - **b.** Find the torsion coefficients of $\mathbb{Z}_6 \times \mathbb{Z}_{12} \times \mathbb{Z}_{20}$.
 - c. Describe an algorithm to find the torsion coefficients of a direct product of cyclic groups.

Proof Synopsis

45. Give a two-sentence synopsis of the proof of Theorem 11.5.

Theory

- **46.** Prove that a direct product of abelian groups is abelian.
- **47.** Let *G* be an abelian group. Let *H* be the subset of *G* consisting of the identity *e* together with all elements of *G* of order 2. Show that *H* is a subgroup of *G*.
- **48.** Following up the idea of Exercise 47 determine whether *H* will always be a subgroup for every abelian group *G* if *H* consists of the identity *e* together with all elements of *G* of order 3; of order 4. For what positive integers *n* will *H* always be a subgroup for every abelian group *G*, if *H* consists of the identity *e* together with all elements of *G* of order *n*? Compare with Exercise 48 of Section 5.
- **49.** Find a counterexample of Exercise 47 with the hypothesis that G is abelian omitted.

Let H and K be subgroups of a group G. Exercises 50 and 51 ask you to establish necessary and sufficient criteria for G to appear as the internal direct product of H and K.

- **50.** Let H and K be groups and let $G = H \times K$. Recall that both H and K appear as subgroups of G in a natural way. Show that these subgroups H (actually $H \times \{e\}$) and K (actually $\{e\} \times K$) have the following properties.
 - **a.** Every element of G is of the form hk for some $h \in H$ and $k \in K$.
 - **b.** hk = kh for all $h \in H$ and $k \in K$.
- **c.** $H \cap K = \{e\}.$
- **51.** Let H and K be subgroups of a group G satisfying the three properties listed in the preceding exercise. Show that for each $g \in G$, the expression g = hk for $h \in H$ and $k \in K$ is unique. Then let each g be renamed (h, k). Show that, under this renaming, G becomes structurally identical (isomorphic) to $H \times K$.
- **52.** Show that a finite abelian group is not cyclic if and only if it contains a subgroup isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p.
- 53. Prove that if a finite abelian group has order a power of a prime p, then the order of every element in the group is a power of p. Can the hypothesis of commutativity be dropped? Why, or why not?
- **54.** Let G, H, and K be finitely generated abelian groups. Show that if $G \times K$ is isomorphic to $H \times K$, then $G \simeq H$.