MAZUR-TYPE MANIFOLDS WITH L-SPACE BOUNDARY
JAMES CONWAY AND BULENT TOSUN

ABSTRACT. In this note, we prove that if the boundary of a Mazur-type 4-manifold is an irre-
ducible Heegaard Floer homology L—space, then the manifold must be the 4-ball, and the bound-
ary must be the 3—sphere. We use this to give a new proof of Gabai’s Property R.

1. INTRODUCTION

A Mazur-type manifold is a contractible 4-manifold with a particular handle structure: namely,
it consist of a single handle of each index 0, 1, and 2, where the 2-handle is attached along a knot
K that intersect the co-core of the 1-handle algebraically once (this yields a trivial fundamental
group). Let M(n) denote such a manifold, where n € Z denotes the framing of the knot along
which the 2-handle is attached. Our main result is that

Theorem 1. If M(n) is a Mazur-type manifold, and the boundary is an irreducible Heegaard Floer
homology L-space, then M (n) is diffeomorphic to B* and OM (n) is diffeomorphic to S3.

FIGURE 1. A Mazur-type manifold, with one 0-handle, one 1-handle, and one
2-handle attached along K with framing n.

Recall that a Heegaard Floer homology L—space (or simply L—space) is a 3—-manifold whose Hee-
gaard Floer homology is as simple as possible: HF™4(M, 5) vanishes for every s € Spin®(M).

Remark 2. Our result above provides further evidence to support Ozsvath and Szabd’s conjecture
in [16, page 40] that the full list of irreducible homology spheres that are L-spaces up to diffeo-
morphism is S® and the Poincaré homology sphere (2, 3, 5) with its two orientations. This con-
jecture has already been verified for Seifert-fibered spaces in [17]. Indeed, if we further assume
in Theorem|I|that the boundary is a Seifert-fibered space, then the list of Seifert-fibered L-spaces,
as just mentioned, is S® and +3(2, 3,5). By Rohlin’s theorem, (2, 3, 5) cannot bound an acyclic
manifold. In particular, the first part of Theoremholds trivially in this case. However, there are
abundant examples of Mazur-type manifolds with hyperbolic boundary, including the Mazur
corks [1},3].
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Given a handle decomposition of a Mazur-type manifold W, we can turn it upside down and
consider it as being composed of a single handle of indices 2, 3, and 4. Attaching just the 2-
handle, we see that we have a surgery on —9W that results in S x S?. We use this to give
another proof of (a slightly more general version of) Property R, first proved by Gabai [6].

Theorem 3. If Y is an irreducible integer homology sphere L—space, and O—surgery on K C Y gives
St x S2, then Y is S3 and K is the unknot.

We note that our proof via Heegaard Floer homology and contact geometry is of a different
flavor than Gabai’s original proof, although some of the machinery in the background is similar
to the machinery involved in existing proofs (by Gabai [6], Gordon and Luecke [9], and Scharle-
mann [18]). Our methods do not require assuming that Y is S3 to start off; however, the other
proofs actually prove much more general results.

Remark 4. Recall that a well-known equivalent phrasing of the smooth 4-dimensional Poincaré
Conjecture is that every contractible manifold with boundary S 3is diffeomorphic to B* (see [19,
Remark 4.8] and related discussion after Question 1.2 in [13]]). Theorem[I]touches on this, in that
it shows that whenever S% bounds a contractible manifold M of Mazur-type, then M is diffeo-
morphic to B*. However, our methods do not generalize to the case of contractible manifolds
with more than a single handle of index 1 and 2: in particular, we rely on a result [2, Proposi-
tion 1.2] of Akbulut and Karakurt about Mazur-type manifolds, and its natural generalization to
the more general setting is no longer true. Indeed, if the proof of Theorem [1| generalized, then
the boundary of the co-core of each 2-handle would have to be an unknot. However, there are
examples where this is not the case, see for example [8, Section 6].

Acknowledgements: We thank both Jeffrey Meier and Alexander Zupan for pointing us to-
ward Property R, and the former also for pointing us to the examples in Remark §] We thank
also John Etnyre, Tom Mark, and Ian Agol for helpful comments. The first author was partially
supported by NSF grant DMS-1344991.

2. PROOFS OF RESULTS

Proof of Theorem[I] We split our proof into two steps: we first show that the boundary is $3, and
then we show that the 4-manifold itself is B*.

We start by recalling that the Heegaard Floer homology of dM (n) is independent of the fram-
ing n. As we mentioned in the introduction, this was proved by Akbulut and Karakurt in [2,
Proposition 1.2]. The idea is as follows: since M (n) is contractible, its boundary is an integral
homology sphere, and hence

HFT(OM (k) = T+ @ HF*Y(9M(n)),

where T+ = F[U, U]/ (U - F[U]). Therefore, they just need to show that H F**4(0M (n)) is inde-
pendent of n. This is achieved by applying the Heegaard Floer surgery exact triangle. Namely,
—1-and 0-surgeries along the knot K’ produces M (n+ 1) and S* x 52, respectively, and this fits
into the following surgery exact triangle:

B R OM@n+ 1) I HEY (8 x 8% 60) & HFF (0M(n) s -
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Here, HF* (S x S%,t)) &2 T," & T',, and the homomorphisms f; and f> are homogenous of de-
2 2

gree —3. Using these facts, one can quickly determine that f3 induces an isomorphism between
HF™4(9M(n)) and HF™Y(OM(n + 1)) (see [2, Proposition 1.2] for more details). Applying Ak-
bulut and Karakurt’s result shows that if 9M (n) is an L-space for one value of n, then it is an
L—space for all values of n.

Step 1: Assume that Y = 0dM(n) is an L-space for some n. We want to show that Y is
diffeomorphic to S®. Let K’ denote a meridian of K (see Figure2). Thought of as a knot in Y,
K’ is isotopic to the boundary of the co-core of the 2-handle. Note that +1-surgery on K’ C Y
is an L—space, since it gives us the 3-manifolds M (n F 1), which are L-spaces, by the previous
paragraph.

zO_/

FIGURE 2. Theknot K’ C Y.

If Y is not diffeomorphic to S3, then we claim that the complement of K’ in Y is irreducible.
This can be seen as follows: since Y is itself irreducible, if K’ has reducible complement, then K’
must be contained in a 3-ball. If this is the case, then the result of O—surgery on K’ would be the
connected sum Y#Y’, for some 3-manifold Y’. However, we know that the result of 0-surgery
on K’ is actually St x S?, since K’ is the meridian of K C S! x S2. Since S! x S? is prime, it
follows that K’ must have an irreducible complement.

Since K’ is an L-space knot, and either Y = S or the complement of K’ is irreducible, then
by [4, Theorem 6.5] (see also [12, Page 1, paragraph 2]), it follows that K" must be fibered. On the
other hand, by [11] and [5} Corollary 1.4], fibered L—space knots support tight contact structures.
This is proved by calculating the Heegaard Floer contact invariant of a certain contact structure
on — (Y,,(K')), where n € Z is large. If K’ supports a contact structure with vanishing Heegaard
Floer contact invariant, then one shows that the reduced Heegaard Floer contact invariant for
the contact structure — (Y,,(K”)) is non-vanishing, which cannot happen if it is an L-space.

However, both K’ in Y and —K’ in —Y (its mirror) are fibered L-space knots, since both 1-
and —1-surgery on K’ yields an L-space. If they both support tight contact structures, then
the monodromy of the compatible open book must be trivial. Since Y is a homology sphere, this
implies that the page of the open book is a disk, that K is the unknot, and that Y is diffeomorphic
to S3.

Step 2: We now wish to show that M (n) is diffeomorphic to B*. First recall that if M (n) admits
a Stein structure in which OM (n) is a convex level-set of the plurisubharmonic function, then
M (n) is a Stein filling — and hence a strong symplectic filling — of the tight contact structure
on S3. By a famous result of Gromov and McDuff [10,14], any minimal such strong symplectic
filling is diffeomorphic to B.
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Let k be a positive integer, such that M (n — k) admits a Stein structure. To find such a k&,
let L C (S' x S2,&44q) be a Legendrian realization of K, the attaching sphere of the 2-handle.
We can now measure tb(L) (see [7, Section 2] for details and conventions), such that we can
build a Stein structure on M (tb(L) — 1) by extending the Stein structure on S! x B3 over a Stein
2-handle attached to L with smooth framing tb(L) — 1. Now, we can choose any k such that
n—k<tb(L)—1.

T

FIGURE 3.

Now note that S® can be described as the boundary of M (n — k) with 2-handles attached with
framing —1 along k copies of K’ C S = M (n — k). As a 4-manifold,

M(n — k)|_J2-handles = M(n — k)#kCP",

and since M (n — k) admits a Stein structure, this k—fold blow-up admits a symplectic structure
with strongly convex boundary (see [15} Section 7.1]). Additionally, by pulling off the attaching
spheres of the 2-handles off of K/, the attaching sphere of the 2-handle of M (n— k) (see Figure[3),

we see that this manifold also describes M (n)#k@z, and hence the latter manifold also admits
a symplectic structure with strongly convex boundary. By blowing down, we find that M (n)
itself admits a symplectic structure with strongly convex boundary (see again [15} Section 7.1]).
Since M (n) is minimal, the aforementioned result of Gromov and McDuff implies that M (n) is
diffeomorphic to B*. O

Proof of Theorem (3] Let Y be an irreducible integer homology sphere L-space, and let K’ C Y be
a knot such that O-surgery on K’ gives S x S%2. Consider the 4-dimensional cobordism from
Y to S! x S? that is the trace of this surgery. Turn this cobordism upside down, to see it as a
cobordism from S* x S2 to —Y, and glue on S! x B3 by a diffeomorphism S* x 52 = 9(S* x B?).
Call the resulting 4-manifold W, and notice that IV is a Mazur-type manifold, and K’ is isotopic
to boundary of the co-core of the 2-handle in W. By Theorem [I| and its proof, we know that
—Y =2 83 (and hence Y =2 S as well), and also that K is the unknot. O

Remark 5. Given Property R, showing that any Mazur-type manifold with boundary S? is actu-
ally diffeomorphic to B* (Step 2 in our proof of Theorem [1) is trivial: turning it upside down,
it must consist of a 2-handle attached along an unknot and a canceling 3-handle, followed by
a capping 4-handle, which gives BY. However, we find that the symplectic geometric proof
presents an unnusual take on this problem that we find interesting.
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