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ABSTRACT. In this note, we prove that if the boundary of a Mazur-type 4–manifold is an irre-
ducible Heegaard Floer homology L–space, then the manifold must be the 4–ball, and the bound-
ary must be the 3–sphere. We use this to give a new proof of Gabai’s Property R.

1. INTRODUCTION

A Mazur-type manifold is a contractible 4–manifold with a particular handle structure: namely,
it consist of a single handle of each index 0, 1, and 2, where the 2–handle is attached along a knot
K that intersect the co-core of the 1–handle algebraically once (this yields a trivial fundamental
group). Let M(n) denote such a manifold, where n ∈ Z denotes the framing of the knot along
which the 2–handle is attached. Our main result is that

Theorem 1. If M(n) is a Mazur-type manifold, and the boundary is an irreducible Heegaard Floer
homology L–space, then M(n) is diffeomorphic to B4 and ∂M(n) is diffeomorphic to S3.
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FIGURE 1. A Mazur-type manifold, with one 0–handle, one 1–handle, and one
2–handle attached along K with framing n.

Recall that a Heegaard Floer homology L–space (or simply L–space) is a 3–manifold whose Hee-
gaard Floer homology is as simple as possible: HF red(M, s) vanishes for every s ∈ Spinc(M).

Remark 2. Our result above provides further evidence to support Ozsváth and Szabó’s conjecture
in [16, page 40] that the full list of irreducible homology spheres that are L–spaces up to diffeo-
morphism is S3 and the Poincaré homology sphere Σ(2, 3, 5) with its two orientations. This con-
jecture has already been verified for Seifert-fibered spaces in [17]. Indeed, if we further assume
in Theorem 1 that the boundary is a Seifert-fibered space, then the list of Seifert-fibered L–spaces,
as just mentioned, is S3 and ±Σ(2, 3, 5). By Rohlin’s theorem, Σ(2, 3, 5) cannot bound an acyclic
manifold. In particular, the first part of Theorem 1 holds trivially in this case. However, there are
abundant examples of Mazur-type manifolds with hyperbolic boundary, including the Mazur
corks [1, 3].
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Given a handle decomposition of a Mazur-type manifold W , we can turn it upside down and
consider it as being composed of a single handle of indices 2, 3, and 4. Attaching just the 2–
handle, we see that we have a surgery on −∂W that results in S1 × S2. We use this to give
another proof of (a slightly more general version of) Property R, first proved by Gabai [6].

Theorem 3. If Y is an irreducible integer homology sphere L–space, and 0–surgery on K ⊂ Y gives
S1 × S2, then Y is S3 and K is the unknot.

We note that our proof via Heegaard Floer homology and contact geometry is of a different
flavor than Gabai’s original proof, although some of the machinery in the background is similar
to the machinery involved in existing proofs (by Gabai [6], Gordon and Luecke [9], and Scharle-
mann [18]). Our methods do not require assuming that Y is S3 to start off; however, the other
proofs actually prove much more general results.

Remark 4. Recall that a well-known equivalent phrasing of the smooth 4–dimensional Poincaré
Conjecture is that every contractible manifold with boundary S3 is diffeomorphic to B4 (see [19,
Remark 4.8] and related discussion after Question 1.2 in [13]). Theorem 1 touches on this, in that
it shows that whenever S3 bounds a contractible manifold M of Mazur-type, then M is diffeo-
morphic to B4. However, our methods do not generalize to the case of contractible manifolds
with more than a single handle of index 1 and 2: in particular, we rely on a result [2, Proposi-
tion 1.2] of Akbulut and Karakurt about Mazur-type manifolds, and its natural generalization to
the more general setting is no longer true. Indeed, if the proof of Theorem 1 generalized, then
the boundary of the co-core of each 2–handle would have to be an unknot. However, there are
examples where this is not the case, see for example [8, Section 6].

Acknowledgements: We thank both Jeffrey Meier and Alexander Zupan for pointing us to-
ward Property R, and the former also for pointing us to the examples in Remark 4. We thank
also John Etnyre, Tom Mark, and Ian Agol for helpful comments. The first author was partially
supported by NSF grant DMS-1344991.

2. PROOFS OF RESULTS

Proof of Theorem 1. We split our proof into two steps: we first show that the boundary is S3, and
then we show that the 4–manifold itself is B4.

We start by recalling that the Heegaard Floer homology of ∂M(n) is independent of the fram-
ing n. As we mentioned in the introduction, this was proved by Akbulut and Karakurt in [2,
Proposition 1.2]. The idea is as follows: since M(n) is contractible, its boundary is an integral
homology sphere, and hence

HF+(∂M(k)) ∼= T + ⊕HF red(∂M(n)),

where T + ∼= F[U,U−1]/ (U · F[U ]). Therefore, they just need to show that HF red(∂M(n)) is inde-
pendent of n. This is achieved by applying the Heegaard Floer surgery exact triangle. Namely,
−1– and 0–surgeries along the knot K ′ produces M(n+ 1) and S1×S2, respectively, and this fits
into the following surgery exact triangle:

· · · f3−→ HF+
k (∂M(n+ 1))

f1−→ HF+
k− 1

2

(S1 × S2, t0)
f2−→ HF+

k−1(∂M(n))
f3−→ · · ·
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Here, HF+(S1×S2, t0) ∼= T +
1
2

⊕T +
− 1

2

, and the homomorphisms f1 and f2 are homogenous of de-

gree −1
2 . Using these facts, one can quickly determine that f3 induces an isomorphism between

HF red(∂M(n)) and HF red(∂M(n + 1)) (see [2, Proposition 1.2] for more details). Applying Ak-
bulut and Karakurt’s result shows that if ∂M(n) is an L–space for one value of n, then it is an
L–space for all values of n.

Step 1: Assume that Y = ∂M(n) is an L–space for some n. We want to show that Y is
diffeomorphic to S3. Let K ′ denote a meridian of K (see Figure 2). Thought of as a knot in Y ,
K ′ is isotopic to the boundary of the co-core of the 2–handle. Note that ±1–surgery on K ′ ⊂ Y
is an L–space, since it gives us the 3–manifolds ∂M(n∓ 1), which are L–spaces, by the previous
paragraph.

K
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...

n

K ′

FIGURE 2. The knot K ′ ⊂ Y .

If Y is not diffeomorphic to S3, then we claim that the complement of K ′ in Y is irreducible.
This can be seen as follows: since Y is itself irreducible, if K ′ has reducible complement, then K ′

must be contained in a 3–ball. If this is the case, then the result of 0–surgery on K ′ would be the
connected sum Y#Y ′, for some 3–manifold Y ′. However, we know that the result of 0–surgery
on K ′ is actually S1 × S2, since K ′ is the meridian of K ⊂ S1 × S2. Since S1 × S2 is prime, it
follows that K ′ must have an irreducible complement.

Since K ′ is an L–space knot, and either Y ∼= S3 or the complement of K ′ is irreducible, then
by [4, Theorem 6.5] (see also [12, Page 1, paragraph 2]), it follows thatK ′ must be fibered. On the
other hand, by [11] and [5, Corollary 1.4], fibered L–space knots support tight contact structures.
This is proved by calculating the Heegaard Floer contact invariant of a certain contact structure
on − (Yn(K ′)), where n ∈ Z is large. If K ′ supports a contact structure with vanishing Heegaard
Floer contact invariant, then one shows that the reduced Heegaard Floer contact invariant for
the contact structure − (Yn(K ′)) is non-vanishing, which cannot happen if it is an L–space.

However, both K ′ in Y and −K ′ in −Y (its mirror) are fibered L–space knots, since both 1–
and −1–surgery on K ′ yields an L–space. If they both support tight contact structures, then
the monodromy of the compatible open book must be trivial. Since Y is a homology sphere, this
implies that the page of the open book is a disk, thatK ′ is the unknot, and that Y is diffeomorphic
to S3.

Step 2: We now wish to show thatM(n) is diffeomorphic toB4. First recall that ifM(n) admits
a Stein structure in which ∂M(n) is a convex level-set of the plurisubharmonic function, then
M(n) is a Stein filling — and hence a strong symplectic filling — of the tight contact structure
on S3. By a famous result of Gromov and McDuff [10, 14], any minimal such strong symplectic
filling is diffeomorphic to B4.
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Let k be a positive integer, such that M(n − k) admits a Stein structure. To find such a k,
let L ⊂ (S1 × S2, ξstd) be a Legendrian realization of K, the attaching sphere of the 2–handle.
We can now measure tb(L) (see [7, Section 2] for details and conventions), such that we can
build a Stein structure on M(tb(L)− 1) by extending the Stein structure on S1 ×B3 over a Stein
2–handle attached to L with smooth framing tb(L) − 1. Now, we can choose any k such that
n− k ≤ tb(L)− 1.

∼=
· · · · · · · · · · · ·n− k n

· · ·
−1 −1

−1
· · ·

−1

FIGURE 3.

Now note that S3 can be described as the boundary of M(n−k) with 2–handles attached with
framing −1 along k copies of K ′ ⊂ S3 = ∂M(n− k). As a 4–manifold,

M(n− k)
⋃

2–handles ∼= M(n− k)#kCP2
,

and since M(n − k) admits a Stein structure, this k–fold blow-up admits a symplectic structure
with strongly convex boundary (see [15, Section 7.1]). Additionally, by pulling off the attaching
spheres of the 2–handles off ofK, the attaching sphere of the 2–handle ofM(n−k) (see Figure 3),
we see that this manifold also describes M(n)#kCP2, and hence the latter manifold also admits
a symplectic structure with strongly convex boundary. By blowing down, we find that M(n)
itself admits a symplectic structure with strongly convex boundary (see again [15, Section 7.1]).
Since M(n) is minimal, the aforementioned result of Gromov and McDuff implies that M(n) is
diffeomorphic to B4. �

Proof of Theorem 3. Let Y be an irreducible integer homology sphere L–space, and let K ′ ⊂ Y be
a knot such that 0–surgery on K ′ gives S1 × S2. Consider the 4–dimensional cobordism from
Y to S1 × S2 that is the trace of this surgery. Turn this cobordism upside down, to see it as a
cobordism from S1×S2 to−Y , and glue on S1×B3 by a diffeomorphism S1×S2 ∼= ∂(S1×B3).
Call the resulting 4–manifold W , and notice that W is a Mazur-type manifold, and K ′ is isotopic
to boundary of the co-core of the 2–handle in W . By Theorem 1 and its proof, we know that
−Y ∼= S3 (and hence Y ∼= S3 as well), and also that K ′ is the unknot. �

Remark 5. Given Property R, showing that any Mazur-type manifold with boundary S3 is actu-
ally diffeomorphic to B4 (Step 2 in our proof of Theorem 1) is trivial: turning it upside down,
it must consist of a 2–handle attached along an unknot and a canceling 3–handle, followed by
a capping 4–handle, which gives B4. However, we find that the symplectic geometric proof
presents an unnusual take on this problem that we find interesting.
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