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ABSTRACT. We show that all positive contact surgeries on every Legendrian figure-eight knot in pS3, ξstdq

result in an overtwisted contact structure. The proof uses convex surface theory and invariants from
Heegaard Floer homology.

1. INTRODUCTION

Dehn surgery on knots has been a fruitful way to construct new contact structures on 3-manifolds,
and in particular to try to construct new tight contact manifolds. When the knot in question is a
Legendrian knot (ie. its tangent vectors lie in the contact planes), Dehn surgery with framing equal
to the contact framing always results in an overtwisted contact manifold. The remaining framings
break into two classes: those less than the contact framing, and those greater. Surgeries with these
framings give rise to negative and positive contact surgery, respectively.

In [25], Wand showed that given a tight contact manifold, the result of negative contact surgery
on any Legendrian knot is a tight contact manifold. Regarding positive contact surgery, much less
is known; existing tightness results can be found in [2, 11, 16, 17, 19–21].

Most of the results for positive contact surgery prove tightness using various flavours of Hee-
gaard Floer homology. In particular, the non-vanishing of the Heegaard Floer contact class shows
that a contact manifold is tight, however its vanishing is not equivalent to a contact manifold be-
ing overtwisted. Several of the above results give conditions under which contact p`1q-surgery (ie.
positive contact surgery with framing one more than the contact framing) has vanishing Heegaard
Floer contact class.

There are fewer results that show that positive contact surgeries starting from a tight contact
structure result in an overtwisted one. Lisca and Stipsicz showed in [18] that there exists a configu-
ration in the front projection of a Legendrian knot that ensures contact p`1q-surgery on the knot is
overtwisted. This configuration is not present in the figure-eight knot under consideration in this
paper (but it is present in the negative torus knots, for example). In [2], the author used versions
of the Bennequin inequality (an inequality of Legendrian knot invariants that holds in tight con-
tact manifolds) to give general results for when positive contact surgery on Legendrian knots is
overtwisted.

After the unknot and the trefoils, the figure-eight knot is next natural knot to study (contact surg-
eries on the others were understood by [3, 16] for the unknot, [17] for the right-handed trefoil, and
[2, 18] for the left-handed trefoil). The classification of Legendrian figure-eight knots in pS3, ξstdq
was undertaken by Etnyre and Honda in [8], who proved that all such Legendrian knots are clas-
sified up to isotopy by their Thurston–Bennequin number (tb) and rotation class (rot), and that all
such knots destabilise to a Legendrian knot with tb “ ´3 and rot “ 0. Lisca and Stipsicz showed
in [18] that the result of contact p`1q-surgery on any Legendrian figure-eight knot has vanishing
Heegaard Floer contact class; we answer the natural follow-up question:

Theorem 1.1. The results of all positive contact surgeries on any Legendrian figure-eight knot in pS3, ξstdq
are overtwisted.

Remark 1.2. One should not conclude from Theorem 1.1 that the manifolds resulting from surgery
on the figure-eight support no tight contact structure: in fact, they all support tight contact struc-
tures. However, they do not arise from positive contact surgery on a figure-eight knot in pS3, ξstdq.
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The proof uses convex surfaces and the Heegaard Floer contact class. In particular, given any
Legendrian knot L we show that if any positive contact surgery on L is tight, then a particular
contact structure on S3zNpKq is also tight. For the figure-eight knot, we can show that this contact
structure ξ on S3zNpKq has vanishing Heegaard Floer contact class. We then use convex surfaces
to classify all tight contact structures on S3zNpKq that induce a particular set of dividing curves
on a convex Seifert surface (the same set of curves can also be found in ξ). We then construct these
tight contact structures, and show that they have non-vanishing Heegaard Floer contact class. This
shows that ξ is overtwisted, and proves Theorem 1.1.

Beyond the figure-eight knot, it is unclear how successful this approach will be. The facts that the
figure-eight knot is fibred and has genus 1 play a large role in making the classification of relevant
tight contact structures on S3zNpKq possible. However, the approach of showing that a particular
contact structure on S3zNpKq is overtwisted is more widely applicable, as can be seen in [2].

In all known cases where the result of positive contact surgery on a Legendrian knot pS3, ξstdq is
tight, we also know that the Heegaard Floer contact invariant is non-vanishing. This paper, along
with the results in [2], lend support toward a positive answer to this question:

Question 1.3. Let pM, ξq be the result of some positive contact surgery on a Legendrian knot in pS3, ξstdq.
Is ξ tight if and only if its Heegaard Floer contact class is non-vanishing?

Acknowledgements. The author is indebted to John Etnyre for many helpful discussions. He
thanks Hyunki Min for pointing out a mistake in an earlier version of this paper. The author
also thanks an anonymous referree for their comments. The results in this paper originally ap-
peared as part of the author’s doctoral thesis. This work was partially supported by NSF Grant
DMS-13909073.

2. CONTACT GEOMETRIC BACKGROUND

We begin with a brief reminder of standard theorems about contact structures on 3-manifolds
which we will use throughout this paper. We assume a basic knowledge of contact structures at the
level of [6, 7].

2.1. Farey Graph. The Farey graph is the 1-skeleton of a tessellation of the hyperbolic plane by ge-
odesic triangles shown in Figure 1, where the endpoints of the geodesics are labeled. The labeling,
shown in Figure 1, is determined as follows: let the left-most point be labeled 8 “ 1{0 and the
right-most point be labeled 0. Given a geodesic triangle where two corners are already labeled a{b
and c{d, then the third corner is labeled pa` cq{pb` dq. For triangles in the upper half of the plane,
we treat 0 as 0{p´1q, whereas for triangles in the lower half of the plane, we treat 0 as 0{1. Thus, the
labels on the upper half are all negative, and those on the lower half are all positive. Every rational
number and infinity is found exactly once as a label on the Farey graph.

2.2. Convex Surfaces. We introduce the basics of convex surfaces. See [5] for more details.

A surface Σ (possibly with boundary) in a contact manifold pM, ξq is called convex if there exists
a contact vector field v such that v is transverse to Σ. Here, a contact vector field is a vector field whose
flow preserves the contact planes. Using the contact vector field v, it is not hard to see that convex
surfaces have a neighbourhood contactomorphic to Σ ˆ R with an R-invariant contact structure,
called a vertically-invariant neighbourhood of Σ.

Given a surface Σ in pM, ξq and the characteristic foliation F on Σ induced by ξ, we say that a
multi-curve Γ on Σ divides F if

‚ ΣzΓ “ Σ` \ Σ´,
‚ Γ is transverse to the singular foliation F , and
‚ there is a volume form ω on Σ and a vector field w such that

– ˘Lwω ą 0 on Σ˘,
– w directs F , and
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FIGURE 1. The Farey graph.

– w points out of Σ` along Γ.

Theorem 2.1 (Giroux [10]). A closed surface Σ is C8-close to a convex surface. If Σ is a surface with
Legendrian boundary such that the twisting of the contact planes along each boundary component is non-
positive when measured against the framing given by Σ, then Σ can be C0-perturbed in a neighbourhood of
the boundary and C8-perturbed on its interior to be convex.

If Σ Ă pM, ξq is an orientable surface, and its boundary (if it is non-empty) is Legendrian, then Σ is a
convex surface if and only if its characteristic foliation has a dividing set. Given a convex surface Σ with
dividing curves Γ, and any singular foliation F on Σ divided by Γ, then Σ can be perturbed to a convex
surface with characteristic foliation F .

In particular, convex surfaces are generic, and the germ of the contact structure at a convex
surface is determined (up to a C0-perturbation of the surface) by its dividing curves and the signs
of the regions Σ˘.

A properly-embedded graph G on a convex surface Σ is non-isolating if G intersects the dividing
curves Γ transversely, and each component of ΣzG has non-trivial intersection with Γ.

Theorem 2.2 (Honda [12]). If G is a non-isolating properly-embedded graph on a convex surface Σ, then
there is an isotopy of Σ relative to its boundary such that G is contained in the new characteristic foliation.
If G is a simple closed curve, then the twisting of the contact planes along L with respect to the framing on
G given by Σ is equal to

twpG,Σq “ ´
|GX Γ|

2
.
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This is commonly called the Legendrian realisation principle. In particular, a simple closed curve
in Σ that is non-separating can always be Legendrian realised on a convex surface. If L is a null-
homologous Legendrian knot bounding a convex surface, then twpL,Σq “ tbpLq, and so tbpLq “
´|LX Γ|{2.

Giroux has shown that there are restrictions on dividing curves in tight manifolds. This result is
often called Giroux’s Criterion.

Theorem 2.3 (Giroux [10]). If Σ “ S2 is convex, then a vertically-invariant neighbourhood of Σ is tight
if and only if the dividing set Γ is connected. If Σ ‰ S2, then a vertically-invariant neighbourhood of Σ is
tight if and only if Γ has no contractible components.

Given two convex surfaces Σ1 and Σ2 that intersect in a Legendrian curve L, Kanda [14] and
Honda [12] have shown that between each intersection of L with ΓΣ1

is exactly one intersection of
L with ΓΣ2

, as in Figure 2. Honda further showed that there is a way to “round edges” at L and get
a new convex surface. The dividing set on the new surface is derived from ΓΣi as in Figure 3.
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4. Distinguishing contact structures and the first
classification results

The power of convex surfaces is contained largely in Theorem 2.26 in
conjunction with the ability to transfer information from one convex surface
to another one meeting it along a Legendrian curve.

Lemma 4.1 (Kanda 1997, [6]; Honda 2000, [3]). Suppose that Σ and Σ′ are
convex surfaces, with dividing curves Γ and Γ′, and ∂Σ′ ⊂ Σ is Legendrian.
Let S = Γ ∩ ∂Σ′ and S′ = Γ′ ∩ ∂Σ′. Then between each two adjacent points
in S there is one point in S′ and vice verse. See Figure 10. (Note the sets

Figure 10. Transferring information about dividing curves
from one surface to another. The top and bottom of the
picture are identified.

S and S′ are cyclically ordered since they sit on ∂Σ′)

To prove this lemma one just considers a “standard model”. More specif-
ically, consider R

3/ ∼, where (x, y, z) ∼ (x, y, z + 1), with the contact struc-
ture ξ = ker(sin(2nπz)dx + cos(2nπz)dy. Let Σ = {(x, y, z) : x = 0} and
Σ′ = {(x, y, z) : y = 0, x ≥ 0}. Note both these surface are convex and the
boundary of Σ′ is a Legendrian curve in Σ. In Figure 10 we see the situation
for n = 2. The choice of n in this model is clearly determined by tw(∂Σ′,Σ′).
Lemma 4.1 clearly follows form considering this model.

Exercise 4.2. Show that the situation described in Lemma 4.1 can always be
modeled as described above.

Using this model it is also easy to see how to “round corners”.

Lemma 4.3 (Honda 2000, [3]). Suppose that Σ and Σ′ are convex surfaces,
with dividing curves Γ and Γ′, and ∂Σ′ = ∂Σ is Legendrian. Suppose Σ
and Σ′ are modeled as above with Σ = {(x, y, z) : x = 0, y ≥ 0}, then we
may form a surface Σ′′ from S = Σ ∩ Σ′ by replacing S intersect a small
neighborhood N of ∂Σ (thought of as the z-axis) with the intersection of N
with {(x, y, z) : (x − δ)2 + (y − δ)2 = δ2} For a suitably chosen δ, Σ′ will

Σ1

Σ2

FIGURE 2. Two convex surfaces intersecting in a Legendrian curve. This figure is
reproduced from [5, Figure 10].

CONVEX SURFACES IN CONTACT GEOMETRY: CLASS NOTES 23

be a smooth surface (actually just C1, but it can then be smoothed by a C1

small isotopy which of course does not change the characteristic foliation)
with dividing curve as shown in Figure 11.

Figure 11. Rounding a corner between two convex surfaces.

Remark 4.4. Note this lemma says that as you round a corner then the
dividing curves on the two surfaces connect up as follows. Moving from Σ
to Σ′ the dividing curves move up (down) if Σ′ is to the right (left) of Σ.

4.1. Neighborhoods of Legendrian curves. We can now give a simple
proof of the following result which is essentially due to Makar-Limanov [14],
but for the form presented here see Kanda [6]. Though this theorem seems
easy, it has vast generalizations which we indicate below.

Theorem 4.5 (Kanda 1997, [6]). Suppose M = D2×S1 and F is a singular
foliation on ∂M that is divided by two parallel curves with slope 1

n (here slope
1
n means that the curves are homotopic to n[∂D2 × {p}] + [{q}× S1] where
p ∈ S1 and q ∈ ∂D2). Then there is a unique tight contact structure on M
whose characteristic foliation on ∂M is F .

Proof. To see existence simply consider a standard neighborhood of a Leg-
endrian knot or similarly consider the tori Ta in the proof of Lemma 3.8.

Suppose we have two tight contact structures ξ0 and ξ1 on M inducing F
as the characteristic foliation on ∂M. We will find a contactomorphism from
ξ0 to ξ1 (in fact this contactomorphism will be isotopic to the identity). Let
f : M → M be the identity map. By Theorem 1.1 we can isotop f rel. ∂M to
be a contactomorphism in a neighborhood N of ∂M. Now let T be a convex
torus in N isotopic to ∂M. Moreover we can assume that the characteristic
foliation on T is in standard form. We know the slope of the Legendrian
divides is 1

n and we choose the slope of the ruling curves to be 0. Let D
be a meridianal disk whose boundary is a ruling curve. We can perturb D
so that it is convex and using Lemma 4.1 we know that the dividing curves
for D intersect the boundary of D in two points. Moreover, since there
are no closed dividing curves on D (since the contact structure is tight, see

Σ1

Σ2

FIGURE 3. “Rounding edges” of intersecting convex surfaces. This figure is repro-
duced from [5, Figure 11].

A special case of “rounding edges” at the intersection of two convex surfaces is when Σ2 is a
bypass. This is when Σ2 is a disc with Legendrian boundary with tb “ ´1, such that Σ1 X Σ2 is
an arc α intersecting ΓΣ1

in three points, two of which are the endpoints of α; we further require
that the endpoints of α are elliptic singularities of the characteristic foliation on Σ2. By the above
discussion, the dividing set ΓΣ2

is a single arc with endpoints on α. By Theorem 2.1, we can arrange
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for there to be a unique hyperbolic singularity on BΣ2 that lies on α and is between the two points
αX ΓΣ2 . The sign of this hyperbolic singularity is called the sign of the bypass.

Honda proved [12] that in a neighbourhood of Σ1 Y Σ2, there is a one-sided neighbourhood
Σ1 ˆ r0, 1s of Σ1 such that Σ1 ˆ t0, 1u is convex, the dividing curves on Σ1 ˆ t0u are ΓΣ1

, and the
dividing curves on Σ1 ˆ t1u are ΓΣ1

changed along a neighbourhood of α as in Figure 4. We say
that the convex surface Σ1 ˆ t1u is obtained from Σ1 by a bypass attachment along Σ2.

α

ą

FIGURE 4. The result of performing a bypass on the dividing curves.

If Σ1 is a convex T 2 (resp. T 2zD2) with 2 parallel dividing curves, then we can choose the char-
acteristic foliation on Σ1 such that it consists of two curves called Legendrian divides parallel to the
dividing curves along with a linear foliation of the torus by curves not parallel to the dividing
curves, called ruling curves. Under these hypotheses, Honda proved [12] how the slopes of the di-
viding curves change under bypass attachments along a ruling curve. Denote the slope of curves
parallel to p qp q by p{q, as in the Farey graph.

Theorem 2.4 (Honda [12]). Let Σ1 have two dividing curves of slope s and ruling curves of slope r. Let Σ2

be a bypass attached to Σ1 along a ruling curve. Then the result Σ11 of a bypass attachment along Σ2 has two
dividing curves with slope s1, where s1 is the label on the Farey graph clockwise of r and counter-clockwise of
s, and such that s1 is the label closest to r with an edge to s.

Remark 2.5. If Σ2 is a bypass for Σ1 attached along the back of Σ1, then the bypass attachment will
change ΓΣ1

in a manner similar to Figure 4 but reflected in the vertical axis. Theorem 2.4 will hold
after reversing the words “clockwise” and “counter-clockwise”.

Bypasses are only useful if we can find them. To that effect, we have the Imbalance Principle,
which allows us to find bypasses on annuli.

Theorem 2.6 (Honda [12]). Let Σ and A “ S1ˆ r0, 1s be two convex surfaces with Legendrian boundary,
such that ΣXA “ S1 ˆ t0u. Then, if the twisting of the contact planes along the boundary of A satisfies

twpS1 ˆ t0u, Aq ă twpS1 ˆ t1u, Aq ď 0,

then there is a bypass for Σ along A, ie. some subsurface of A is a bypass for Σ.

In particular, if S1 ˆ t1u sits on a convex surface Σ1, and
ˇ

ˇΓΣ X
`

S1 ˆ t0u
˘
ˇ

ˇ ą
ˇ

ˇΓΣ1 X
`

S1 ˆ t0u
˘
ˇ

ˇ ,

then the hypotheses of Theorem 2.6 hold, and there is a bypass for Σ along A.

2.3. Basic Slices. Consider the manifold pT 2ˆI, ξq, with ξ tight. Let the two boundary components
be convex with two dividing curves each, with slopes s0 and s1. If s0 and s1 are labels on the Farey
graph connected by a geodesic, then pT 2 ˆ I, ξq is called a basic slice if the contact structure is
minimally twisting, ie. if any boundary-parallel convex torus has dividing curves of slope clockwise
of s0 and counter-clockwise of s1. If not, then the manifold can be cut up into basic slices along
boundary parallel convex tori, following the path between s0 and s1 along the Farey graph.

Theorem 2.7 (Honda [12]). There are exactly two tight contact structures up to isotopy (and only one up to
contactomorphism) on T 2ˆ I with a fixed singular foliation on the boundary that is divided by two dividing
curves on T 2 ˆ tiu for i “ 0, 1 each of slope si, where s0 and s1 are labels in the Farey graph connected by a
geodesic.
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Given a contact structure ξ on M that is trivialised by v on BM , we can define a relative Euler
class epξ, vq P H2pM, BM ;Zq. Given a convex surface Σ with boundary on BM , whose oriented
tangent vector on BΣ agrees with v, we can calculate

epξ, vqprΣsq “ χpΣ`q ´ χpΣ´q.

For a basic slice with s0 “ ´8 and s1 “ ´1, the relative Euler class acts as 0 on the annulus
p 1

0 q ˆ r0, 1s and as ˘1 on the annulus
`

0
´1

˘

ˆ r0, 1s, where the slope of p qp q is p{q. Every other
basic slice can be put in this standard form by an element of SL2pZq. This calculation allows us to
distinguish the basic slices by calling them positive and negative basic slices; this sign choice is also
such that when gluing a negative (resp. positive) basic slice to the boundary of the complement
of a standard neighbourhood of a Legendrian knot, the result is the complement of a standard
neighbourhood of its negative (resp. positive) stabilisation.

In addition, this classification implies that if we have a basic slice pT 2 ˆ I, ξq that can be broken
up into two basic slices pT 2 ˆ r0, 1{2s, ξ1q and pT 2,ˆr1{2, 1s, ξ2q, then the sign of each of the latter
two basic slices agrees with the sign of pT 2 ˆ I, ξq. Thus, if the signs disagree, then pT 2 ˆ I, ξq is
overtwisted (and hence by definition is not a basic slice).

2.4. Contact Surgery. Given a null-homologous Legendrian knotL Ă pM, ξq, we start by removing
the interior of a standard neighbourhoodNpLq ofL, ie. the interior of a tight solid torus with convex
boundary, where the dividing curves have the same slope as the contact framing tbpLqµ`λ, where
µ is a meridian and λ is the Seifert framing of L.

To do positive contact surgery on L, we first glue a basic slice to BNpLq such that the new contact
structure on MzNpLq has convex boundary with two meridional dividing curves. Different sign
choices on this basic slice in general give rise to distinct contact structures; we denote by ξ`pLq
(resp. ξ´pLq) the contact structure on MzNpLq coming from gluing on a positive (resp. negative)
basic slice. Finally, we then glue a solid torus to the boundary such that the desired topological
surgery is achieved, and we extend the contact structure over the solid torus such that it is tight on
the solid torus. Different choices of sign on the basic slice and different extensions over the solid
torus will in general give rise to distinct contact structures on the surgered manifold, see [12, 14].

2.5. Heegaard Floer Homology. We make use of invariants of contact structures coming from Hee-
gaard Floer theory: for closed contact manifolds pM, ξq, we have an element cpξq P yHF p´Mq (see
[22]), and for contact manifolds pM 1,Γ, ξ1q with convex boundary, where Γ Ă BM 1 is the dividing
set, we have an element EHpξq P SFHp´M 1,´Γq (see [13]). If pM 1,Γ, ξ1q Ă pM, ξq is a contact
embedding, then there is a map SFHp´M 1,´Γq Ñ yHF p´Mq that sends EHpξ1q to cpξq.

To a Legendrian knot L Ă pM, ξq, we associate an element pLpLq (defined in [15]) in the knot Hee-
gaard Floer group zHFKp´M,´Lq. For knots in pS3, ξstdq, pLpLq was identified (up to an automor-
phism of the ambient group) in [1] with a more easily calculable invariant defined in [23]; this latter
invariant can be shown to vanish for any Legendrian figure-eight knot L (as zHFKp´S3,´Lq is triv-
ial in the required grading). In [24], the element pLpLqwas also identified with the classEHpξ´stdpLqq
of pS3zNpKq, ξ´stdpLqq, under an isomorphism zHFKp´S3,´Lq – SFHp´S3zNpKq,´Γmeridionalq.

3. SURGERIES ON THE FIGURE-EIGHT KNOT

Consider the figure-eight knotK in S3 (see Figure 5). We will show that the result of any positive
contact surgery on any Legendrian realisation of the figure-eight knot in pS3, ξstdq is overtwisted.

Let L be a Legendrian figure-eight knot in pS3, ξstdq. Define a contact structure ξ´pLq (resp.
ξ`pLq) on S3zNpKq by gluing a negative (resp. positive) basic slice to the complement of NpLq Ă
pS3, ξstdq such that B

`

S3zNpKq
˘

is convex with two meridional dividing curves.

Proposition 3.1. Let L be a Legendrian figure-eight knot in pS3, ξstdq.
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FIGURE 5. On the left is a smooth figure-eight knotK. On the right is a Legendrian
representative L of K with tbpLq “ tbpKq “ ´3. We omit choices of orientation,
since K is amphichiral.

(1) If tbpLq ´ rotpLq “ ´3 and tbpLq ă ´3, then pS3zNpKq, ξ`pLqq is overtwisted.
(2) If tbpLq ` rotpLq “ ´3 and tbpLq ă ´3, then pS3zNpKq, ξ´pLqq is overtwisted.
(3) If tbpLq ˘ rotpLq ă ´3, then pS3zNpKq, ξ˘pLqq is overtwisted.

Proof. For any Legendrian knotL, pS3zNpKq, ξ´pLqq is contactomorphic to pS3zNpKq, ξ`pLqq, where
L is the mirror Legendrian knot to L. Since the figure-eight knot is amphichiral, L is also a
figure-eight knot, and rotpLq “ ´rotpLq. Thus, p1q and p2q are equivalent. Also, if L satisfies
tbpLq ˘ rotpLq ă ´3, then so does L, so to prove the proposition, it suffices to consider ξ´pLq for L
satisfying the hypotheses of p2q and p3q.

By [8], the figure-eight knot is a Legendrian simple knot (ie. Legendrian figure-eight knots are
classified up to isotopy by their tb and rot) with tbpLq ´ rotpLq ď ´3. Thus, any L satisfying the
hypotheses of p2q or p3q is a positive stabilisation of some other Legendrian knot L1. By the dis-
cussion in Section 2.3, gluing a positive basic slice (with appropriate slopes of dividing curves) to
the complement of a standard neighbourhood of L1 recovers the complement of a standard neigh-
bourhood of L. Thus, gluing a negative basic slice to the complement of a standard neighbourhood
of L — which constructs the contact structure ξ´pLq on S3zNpKq — is the same as first gluing a
positive basic slice to the complement of a standard neighbourhood of L1, and then gluing on a
further negative basic slice to get to ξ´pLq. These two basic slices (the positive and the negative)
glue together to give a single T 2 ˆ I , but since the two basic slices have opposite signs, the contact
structure on this T 2 ˆ I is overtwisted (see the discussion after Theorem 2.7). This T 2 ˆ I embeds
into pS3zNpKq, ξ´pLqq, so we conclude that pS3zNpKq, ξ´pLqq is overtwisted. �

Let Lt have tbpLtq “ t ď ´3 and tbpLtq ´ rotpLtq “ ´3. The negative basic slice with di-
viding curve slopes ´3 and 8 can be divided into two negative basic slices, one with dividing
curve slopes ´3 and t, and one with dividing curve slopes t and 8. Hence, pS3zNpLtq, ξ

´pLtqq “

pS3zNpL´3q, ξ
´pL´3qq for all t ď ´3. A similar statement holds for ξ` for L satisfying tbpLq `

rotpLq “ ´3. Additionally, as in the proof of Proposition 3.1, the amphichirality of the figure-eight
knot gives a contactomorphism between ξ´pL´3q and ξ`pL´3q. Thus, to prove Theorem 1.1, it is
sufficient to show that pS3zNpKq, ξ´pL´3qq is overtwisted.

For the rest of this section, letL denote the Legendrian figure-eight knot in pS3, ξstdqwith tbpLq “
´3 (called L´3 above). Recall that the knot invariant pLpLq coming from Heegaard Floer vanishes
for all Legendrian figure-eight knots, which implies that the contact invariant EHpξ´pLqq “ 0 as
well (see Section 2.5).

Proposition 3.2. All positive contact surgeries on L are overtwisted.
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Sketch of Proof. Assuming ξ is tight, we will use convex surfaces to show that pS3zNpKq, ξ´pLqq
is contactomorphic to a unique contact manifold (see Lemma 3.3 and Lemma 3.4). We will then
construct this contact manifold, and show that it has non-vanishing Heegaard Floer contact class
EH . However, since pLpLq “ 0, we know that EHpξ´pLqq vanishes, and so we arrive at a contra-
diction, and pS3zNpKq, ξ´pLqq is overtwisted. We are then done, by the discussion preceding the
proposition. �

Given a Seifert surface Σ for L, we can think of Σ as sitting inside S3zNpKq with boundary on
B
`

S3zNpKq
˘

. After perturbing Σ to be convex, we first wish to normalise the dividing curves of
Σ in pS3zNpKq, ξ´pLqq. We will use the fact that S3zNpKq is fibred over S1 with fibre Σ, and the
monodromy (after choosing a basis for Σ) is given by

φ “

ˆ

2 1
1 1

˙

up to twisting along the boundary of Σ; choose the representative without any boundary twisting.

FIGURE 6. Possible dividing curves on the annulusA. The tops are identified with
the bottoms, and the left-hand side sits on B

`

S3zNpKq
˘

.

Lemma 3.3. If pS3zNpKq, ξ´pLqq is tight, there is an isotopic copy of Σ in pS3zNpKq, ξ´pLqq such that
it is convex and the dividing curves consist of a single boundary-parallel arc.

Proof. During this proof, we will perturb Σ and swing it around the fibration to get new surfaces
isotopic to Σ; we will call each new copy Σ.

Etnyre and Honda showed in [8] that there exists a convex copy of Σ in the complement of NpLq
with dividing curves consisting of three arcs, parallel to p 0

1 q, p 1
1 q, and p 1

2 q.

After gluing on a negative basic slice to get pS3zNpKq, ξ´pLqq, we extend Σ to the new boundary
by gluing on an annulus A whose dividing curves are of one of the forms given in Figure 6, a
translate of one of those forms (ie. the right-hand side endpoints are shifted up/down in the S1-
direction from what is shown in the figure), or the image of one of those forms in a power of
a Dehn twist along the core of the annulus. Note that we have already excluded from our list
of possibilities the cases where the dividing curves on A trace a boundary-parallel curve along
B
`

S3zNpKq
˘

. In these cases, the dividing curves on Σ would consist of a boundary-parallel curve
and a contractible curve. Since we are assuming that pS3zNpKq, ξ´pLqq is tight, these cases would
contradict Theorem 2.3.
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In any of the remaining cases, the resulting dividing curves on Σ Y A consist either of a single
boundary-parallel arc or one non-boundary-parallel arc and one closed curve. We claim that the
second case cannot occur. Indeed, we claim that a the relative Euler class acting on ΣY A must be
non-zero, whereas it would be zero in the second case.

Indeed, in the second case, the dividing curves divide Σ Y A into positive and negative regions
that have the same Euler characteristic. Since the relative Euler class is the difference of these Euler
characteristics, it must vanish. On the other hand, using the description of the dividing curves of Σ,
it is straightforward to calculate that its relative Euler class vanishes (alternatively, this is the value
of rotpLq, which is 0). Then, by the additivity of this invariant, the relative Euler class of Σ Y A is
equal to the relative Euler class of A in the basic slice.

To calculate this, we convert our basic slice to the standard picture described in Section 2.3. The
matrix

`

1 0
2 1

˘

P SL2pZq takes the slopes´8 and´3 of our basic slice to the standard slopes´8 and
´1, respectively. Since

ˆ

1 0
2 1

˙ˆ

1
0

˙

“

ˆ

1
2

˙

“

ˆ

1
0

˙

´ 2 ¨

ˆ

0
´1

˙

,

we see that the relative Euler class of the basic slice evaluated on A is ¯2, which is non-zero, as
claimed. �

Lemma 3.4. Up to contactomorphism, there is at most one tight contact structure on S3zNpKq inducing a
convex boundary with two meridional dividing curves and such that there exists a copy of Σ with dividing
curves of the form described in Lemma 3.3.

Proof. First, we claim we can switch the signs of the regions Σ˘ of Σ. Indeed, since φ “ p´idq ˝ φ ˝
p´idq´1, we can apply ´id to Σ, which keeps the same dividing curves, but switches the signs of
the regions.

Given Σ with fixed dividing curves Γ and signs of the regions ΣzΓ, this uniquely determines a
tight vertically-invariant contact structure on some neighbourhood NpΣq of Σ. We will show that
there exists a unique tight contact structure on MzNpΣq. Then, given two tight contact structures
on M inducing the same dividing curves on Σ with the same signs, a contactomorphism of NpΣq
can be extended to a contactomorphism on all of M .

Observe that MzNpΣq – Σ ˆ r0, 1s is a genus 2 handlebody. The contact structure has a convex
boundary obtained by rounding the edges of Σ ˆ tiu and BΣ ˆ r0, 1s, where the dividing curves
on Σ ˆ t0u are Γ, those on Σ ˆ t1u are φpΓq “ Γ (since Γ is boundary-parallel), and those on
BΣ ˆ r0, 1s are two copies of tptu ˆ r0, 1s. We will look for compressing discs D1 and D2 such that
their boundaries are Legendrian with tb “ ´1. After making the compressing discs convex, there
will be a unique choice of dividing curves forDi, since their dividing curves intersect the boundary
of the disc at exactly two points, by Theorem 2.2, and there can be no contractible dividing curves,
by Theorem 2.3. This allows us to uniquely define the tight contact structure in a neighbourhood
of B pMzNpΣqq YD1 YD2. The complement of this neighbourhood is diffeomorphic to B3, and by
[4], we can uniquely extend the tight contact structure over B3.

The dividing curves on Σ ˆ t0, 1u are shown as dotted lines in Figure 7. The compressing discs
are shown as solid lines. Figure 8 shows the dividing curves in BΣˆ r0, 1s. As the curves BDi pass
from Σ ˆ t0u to Σ ˆ t1u through the region BΣ ˆ r0, 1s, they do not intersect any dividing curves,
but they do switch which side of the dividing curves they are on. Thus, BDi intersects the dividing
curves exactly twice for each i “ 0, 1, as required. �

We now construct this tight contact manifold, and show that the Heegaard Floer contact class is
non-vanishing:

Consider the open book for S3 given by the figure-eight knot. The supported contact struc-
ture ξot on S3 is overtwisted, but given any Legendrian approximation L1 of the binding of the
open book, it was shown in [9] that pLpL1q is non-vanishing. After gluing a negative basic slice to
the complement of a standard neighbourhood of L1, we arrive at S3zNpKq with contact structure
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Σˆ t0u Σˆ t1u

FIGURE 7. In each picture, the top and bottom are identified, as are the left and
right sides. The dotted lines represent the dividing curves. The solid lines repre-
sent the intersection of the boundaries BDi of the compressing discs with Σˆt0, 1u.

Σˆ t0u

Σˆ t1u

BΣˆ r0, 1s

FIGURE 8. The left and right sides are identified in this picture. The dotted lines
represent the dividing curves. The annulus in the middle is the region BΣˆ r0, 1s,
and the darker regions above and below are interpolating regions representing
how the dividing curves get connected while smoothing the boundary ofMzNpΣq.

ξ´otpL
1q (in the language of Section 2.4). By the discussion in Section 2.5, the fact that pLpL1q ‰ 0

implies that ξ´otpL
1q is tight, and that the Heegaard Floer contact class satisfies EHpξ´otpL

1qq “‰ 0.
It is also shown in [9] that in pS3zNpKq, ξ´otpL

1qq, there is a copy of Σ (which is a page of the open
book) that is convex, with dividing set consisting of one boundary-parallel arc. Thus, the unique
contactomorphism class from Lemma 3.4 of type (2) has non-vanishing Heegaard Floer contact
invariant.



CONTACT SURGERIES ON LEGENDRIAN FIGURE-EIGHT KNOTS 11

Proof of Theorem 1.1. By Proposition 3.1 and the discussion below it, it suffices to consider the case
tbpLq “ ´3. The result of any positive contact surgery on L has a contact submanifold that
can be identified with pS3zNpKq, ξ´pLqq or pS3zNpKq, ξ`pLqq. The Heegaard Floer contact class
EHpξ˘pLqq vanishes, as pLpLq “ 0 and L is amphichiral. Since if tight, ξ´pLq and ξ`pLqwould have
to be contactomorphic to the contact structure on S3zNpKq constructed above with non-vanishing
Heegaard Floer contact class, we conclude that ξ´pLq and ξ`pLq are overtwisted. Thus, any mani-
fold which contains them as a contact submanifold must also be overtwisted. �
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